About packaging - For packaging

IBM and Stanford University Unveil Green Chemistry Breakthrough That Could Lead to New Types of Environmentally Sustainable Plastics (video)

12.03.2010

IBM and Stanford scientists are pioneering the application of organocatalysis to green polymer chemistry, which represents a fundamental shift in the field. This discovery and new approach using organic catalysts could lead to well-defined, biodegradable molecules made from renewable resources in an environmentally responsible way.

“We're exploring new methods of applying technology and our expertise in materials science to create a sustainable, environmentally sound future,” said Josephine Cheng, IBM Fellow and vice president, IBM Research - Almaden. “The development of new families of organic catalysts brings more versatility to green chemistry and opens the door for novel applications, such as making biodegradable plastics, improving the recycling process and drug delivery.”

Disposable plastic bottles are among the most vexing environmental challenges. More than 13 billion plastic bottles are disposed of each year. While plastics are recyclable, the resulting materials are limited to “second generation reuse” only. This means the materials made from recycled plastic bottles are disposed in landfills. In the United States, up to 63 pounds of plastic packaging per-person is disposed of each year, instead of being repeatedly recycled. The IBM-Stanford breakthrough in green chemistry could lead to a new recycling process that reverses the polymerization process to regenerate monomers in their original state, reducing waste and pollution significantly.

IBM also is collaborating with scientists from King Abdulaziz City for Science and Technology (KACST) to develop the recycling process for polyethylene terephthalate (PET) plastics, which is a common plastic used in containers for food, beverages and other liquids.

These breakthroughs also hold promise for biomedical applications. For example, many effective drugs that are designed to target cancer cells are often so potent that they attack cancerous and healthy cells alike. The use of organocatalysis could help in the design of custom polymers that may aid in delivering drugs to a specific cell or region.


Subscribe to our news in social networks and newsletter:

Source: Unipack.Ru

Printable versionAll newsAdd newsSubscribe to News

Other news on this subject:

Manufacturers and suppliers of production

Unipack.Ru is presenting: companies units
Registered: users
We are in social networks:
Рейтинг@Mail.ru